377 research outputs found

    Automation Derivation of Application-Aware Error Detectors Using Compiler Analysis

    Get PDF
    Coordinated Science Laboratory was formerly known as Control Systems LaboratoryNational Science Foundation / NSF ACI CNS-040634 and NSF CNS 05-24695Gigascale Systems Research CenterMotorola Corp

    High-spin structure and Band Termination in 103^{103}Cd

    Full text link
    Excited states of the neutron deficient 103^{103}Cd nucleus have been investigated via the 72^{72}Ge(35^{35}Cl, p3n) reaction at beam energy of 135 MeV by use of in-beam spectroscopic methods. Gamma rays depopulating the excited states were detected using the Gammasphere spectrometer with high-fold γ\gamma-ray coincidences. A quadrupole γ\gamma-ray coincidence analysis (γ4\gamma^{4}) has been used to extend the known level scheme. The positive parity levels have been established up to J=35/2J = 35/2\hbar and Ex=7.071E_{x} = 7.071 MeV. In addition to the observation of highly-fragmented level scheme belonging to the positive-parity sequences at Ex_{x}\sim 5 MeV, the termination of a negative-parity sequence connected by E2E2 transitions has been established at J=47/2J = 47/2 \hbar and Ex=11.877E_{x} = 11.877 MeV. The experimental results corresponding to both the positive- and negative-parity sequences have been theoretically interpreted in the framework of the core particle coupling model. Evidence is presented for a shape change from collective prolate to non-collective oblate above the Jπ=39/2J^{\pi} = 39/2^{-} (8011 keV) level and for a smooth termination of the negative-parity band.Comment: 19 pages, 8 figures. Submitted to Phys. Rev.

    A Composite Chiral Pair of Rotational Bands in the odd-A Nucleus 135Nd

    Get PDF
    High-spin states in 135Nd were populated with the 110Pd(30Si,5n)135Nd reaction at a 30Si bombarding energy of 133 MeV. Two Delta(I)=1 bands with close excitation energies and the same parity were observed. These bands are directly linked by Delta(I)=1 and Delta(I)=2 transitions. The chiral nature of these two bands is confirmed by comparison with three-dimensional tilted axis cranking calculations. This is the first observation of a three-quasiparticle chiral structure and established the primarily geometric nature of this phenomenon.Comment: 10 pages, 5 figures (1 in color), 1 table, submitted to Physics Review Letters, written in REVTEX4 forma

    High-spin structure and Band Termination in 103^{103}Cd

    Full text link
    Excited states of the neutron deficient 103^{103}Cd nucleus have been investigated via the 72^{72}Ge(35^{35}Cl, p3n) reaction at beam energy of 135 MeV by use of in-beam spectroscopic methods. Gamma rays depopulating the excited states were detected using the Gammasphere spectrometer with high-fold γ\gamma-ray coincidences. A quadrupole γ\gamma-ray coincidence analysis (γ4\gamma^{4}) has been used to extend the known level scheme. The positive parity levels have been established up to J=35/2J = 35/2\hbar and Ex=7.071E_{x} = 7.071 MeV. In addition to the observation of highly-fragmented level scheme belonging to the positive-parity sequences at Ex_{x}\sim 5 MeV, the termination of a negative-parity sequence connected by E2E2 transitions has been established at J=47/2J = 47/2 \hbar and Ex=11.877E_{x} = 11.877 MeV. The experimental results corresponding to both the positive- and negative-parity sequences have been theoretically interpreted in the framework of the core particle coupling model. Evidence is presented for a shape change from collective prolate to non-collective oblate above the Jπ=39/2J^{\pi} = 39/2^{-} (8011 keV) level and for a smooth termination of the negative-parity band.Comment: 19 pages, 8 figures. Submitted to Phys. Rev.

    Activation of PKA leads to mesenchymal-to-epithelial transition and loss of tumor-initiating ability

    Get PDF
    The epithelial-to-mesenchymal transition enables carcinoma cells to acquire malignancy-associated traits and the properties of tumor-initiating cells (TICs). TICs have emerged in recent years as important targets for cancer therapy, owing to their ability to drive clinical relapse and enable metastasis. Here, we propose a strategy to eliminate mesenchymal TICs by inducing their conversion to more epithelial counterparts that have lost tumor-initiating ability. We report that increases in intracellular levels of the second messenger, adenosine 3',5'-monophosphate, and the subsequent activation of protein kinase A (PKA) induce a mesenchymal-to-epithelial transition (MET) in mesenchymal human mammary epithelial cells. PKA activation triggers epigenetic reprogramming of TICs by the histone demethylase PHF2, which promotes their differentiation and loss of tumor-initiating ability. This study provides proof-of-principle for inducing an MET as differentiation therapy for TICs and uncovers a role for PKA in enforcing and maintaining the epithelial state

    Trace Sanitizer:Eliminating the Effects of Non-Determinism of Error Propagation Analysis

    Get PDF
    Modern computing systems typically relax execution determinism, for instance by allowing the CPU scheduler to inter- leave the execution of several threads. While beneficial for performance, execution non-determinism affects programs' execution traces and hampers the comparability of repeated executions. We present TraceSanitizer, a novel approach for execution trace comparison in Error Propagation Analyses (EPA) of multi-threaded programs. TraceSanitizer can identify and compensate for non- determinisms caused either by dynamic memory allocation or by non-deterministic scheduling. We formulate a condition under which TraceSanitizer is guaranteed to achieve a 0% false positive rate, and automate its verification using Satisfiability Modulo Theory (SMT) solving techniques. TraceSanitizer is comprehensively evaluated using execution traces from the PARSEC and Phoenix benchmarks. In contrast with other approaches, Trace- Sanitizer eliminates false positives without increasing the false negative rate (for a specific class of programs), with reasonable performance overheads

    Uteroglobin Represses Allergen-induced Inflammatory Response by Blocking PGD2 Receptor–mediated Functions

    Get PDF
    Uteroglobin (UG) is an antiinflammatory protein secreted by the epithelial lining of all organs communicating with the external environment. We reported previously that UG-knockout mice manifest exaggerated inflammatory response to allergen, characterized by increased eotaxin and Th2 cytokine gene expression, and eosinophil infiltration in the lungs. In this study, we uncovered that the airway epithelia of these mice also express high levels of cyclooxygenase (COX)-2, a key enzyme for the production of proinflammatory lipid mediators, and the bronchoalveolar lavage fluid (BALF) contain elevated levels of prostaglandin D2. These effects are abrogated by recombinant UG treatment. Although it has been reported that prostaglandin D2 mediates allergic inflammation via its receptor, DP, neither the molecular mechanism(s) of DP signaling nor the mechanism by which UG suppresses DP-mediated inflammatory response are clearly understood. Here we report that DP signaling is mediated via p38 mitogen–activated protein kinase, p44/42 mitogen–activated protein kinase, and protein kinase C pathways in a cell type–specific manner leading to nuclear factor–κB activation stimulating COX-2 gene expression. Further, we found that recombinant UG blocks DP-mediated nuclear factor–κB activation and suppresses COX-2 gene expression. We propose that UG is an essential component of a novel innate homeostatic mechanism in the mammalian airways to repress allergen-induced inflammatory responses

    Complex ferromagnetic state and magnetocaloric effect in single crystalline Nd_{0.7}Sr_{0.3}MnO_{3}

    Full text link
    The magnetocaloric effect in single crystalline Nd_{0.7}Sr_{0.3}MnO_{3} is investigated by measuring the field-induced adiabatic change in temperature which reveals a single negative peak around 130 K well below the Curie temperature (T_C=203 K). In order to understand this unusual magnetocaloric effect, we invoke the reported {55}^Mn spin-echo nuclear magnetic resonance, electron magnetic resonance and polarized Raman scattering measurements on Nd_{0.7}Sr_{0.3}MnO_{3}. We show that this effect is a manifestation of a competition between the double exchange mechanism and correlations arising from coupled spin and lattice degrees of freedom which results in a complex ferromagnetic state. The critical behavior of Nd_{0.7}Sr_{0.3}MnO_{3} near Curie temperature is investigated to study the influence of the coupled degrees of freedom. We find a complicated behavior at low fields in which the order of the transition could not be fixed and a second-order-like behavior at high fields.Comment: Accepted for publication in Phys. Rev.

    Low Temperature Transport and Specific Heat Studies of Nd_{1-x}Pb_{x}MnO_{3} Single Crystals

    Full text link
    Electrical transport and specific heat properties of Nd_{1-x}Pb_{x}MnO_{3} single crystals for 0.15 < x 0.5 have been studied in low temperature regime. The resistivity in the ferromagnetic insulating (FMI) phase for x < 0.3 has an activated character. The dependence of the activation gap Delta on doping x has been determined and the critical concentration for the zero-temperature metal-insulator transition was determined as x_{c} ~ 0.33. For a metallic sample with x=0.42, a conventional electron-electron (e-e) scattering term proportional T^{2} is found in the low-temperature electrical resistivity, although the Kadowaki-Woods ratio is found to be much larger for this manganite than for a normal metal. For a metallic sample with x=0.5, a resistivity minimum is observed for x= 0.5. The effect is attributed to weak localization and can be described by a negative T^{1/2} weak-localization contribution to resistivity for a disordered three-dimensional electron system. The specific heat data have been fitted to contributions from free electrons (gamma), spin excitations (beta_{3/2}), lattice and a Schottky-like anomaly related to the rare-earth magnetism of the Nd ions. The value of gamma is larger than for normal metals, which is ascribed to magnetic ordering effects involving Nd. Also, the Schottky-like anomaly appears broadened and weakened suggesting inhomogeneous molecular fields at the Nd-sites.Comment: 14 pages, 8 figure
    corecore